

 Navigation

 	
 index

 	Appclusive latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/appclusive-documentation/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/appclusive-documentation/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Appclusive latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Catalogue.html

 Navigation

 		
 index

 		Appclusive latest documentation »

 A Catalogue consists of zero or more CatalogueItems where each CatalogueItem references a given Blueprint. Multiple CatalogueItems can reference the same Blueprint. Each CatalogueItem can define any number of input parameters that override or preset input parameters of a Blueprint.

Taken the example from earlier, we put the Blueprint com.example.Blueprint1 into a CatalogueItem. In its corresponding CatalogueItem we define the following constraint input parameter:

define input parameter 'com.example.Blueprint1.Size' := { M, L }

By specifying M and L as arguments for this input parameter we limit the choice the blueprint would normally offer. Furthermore it is possible to define constraints on a Catalogue as a whole so these input parameters apply to all CatalogueItems (and therefore all blueprints) of that Catalogue.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/plus.png

Workflows.html

 Navigation

 		
 index

 		Appclusive latest documentation »

Development

Design for an Activity

The following blog post explains how to create a design for an Activity.

Associating a WF4 activity designer to a custom activity using MetadataStore [http://geekswithblogs.net/jkurtz/archive/2010/01/26/137639.aspx]

Important

The following points have to be considered when creating a design for an Activity

		In order for Visual Studio activity designer to present the designer for ArbitraryActivity the ArbitraryActivity.Design.dll has to be in the same folder as ArbitraryActivity.dll

		The project containing the workflow the ArbitraryActivity will be used in has to have references to both projects, the ArbitraryActivity project and the ArbitraryActivity.Design project.

Restrictions

		An Activity cannot contain parts of the project namespace in its name (i.e. an Activity with name biz.dfch.CS.SomeProject.Core will not compile, if the Activity resides in biz.dfch.CS.SomeProject). Naming an Activity like BizDfchSomeProjectCore is not a problem.

		When invoking an Activity based on its XAML definition the Activity first has to be loaded using ActivityXamlServices. Loading the Activity results in a instance of type DynamicActivity. This means, that the type of the Activity cannot be determined anymore. Because of that the WorkflowManagers invoke method has to be called by passing the instance of the loaded Activity instead of the type. Otherwise the WorkflowManager will instantiate a new DynamicActivity without any Properties, Variables and Arguments.

Useful Links

		Getting started [https://code.msdn.microsoft.com/windowsapps/Windows-Workflow-deed2cd5]

		Howto create a workflow [https://msdn.microsoft.com/en-us/library/dd489437(VS.110).aspx]

		Howto run a workflow [https://msdn.microsoft.com/en-us/library/dd489463(VS.110).aspx]

		Howto create an activity [https://msdn.microsoft.com/en-us/library/dd489453(VS.110).aspx]

		Building dynamic activities [https://blogs.infosupport.com/building-dynamic-activities-in-workflow-foundation-4-part-3/]

		Associating a WF4 activity designer to a custom activity using MetadataStore [http://geekswithblogs.net/jkurtz/archive/2010/01/26/137639.aspx]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

BlueprintEngine.html

 Navigation

 		
 index

 		Appclusive latest documentation »

 This page contains information about the BlueprintEngine and how blueprints are defined and can be combined.

Definitions

Behaviour

A Behaviour is the most generic component in the system and defines a set of Actions, States and Attributes. A Blueprint can choose to implement any Behaviour it whishes (which is done via a Model), but then also must implement all the Actions, States and Attributes of that Behaviour.

The actual implementation of a Behaviour is done via a BehaviourDefinition which is a special form of a Model.

BaseBehaviour

Behaviours form a hierarchy tree, however unlike a real tree where one Behaviour can derive from multiple other Behaviours (similar to multiple inheritance in programming languages like C++). This chain starts at a common single root that is called BaseBehaviour.

In other words, the BaseBehaviour defines the most common Actions and States for all other Behaviours (the BaseBehaviour does not defines any Attributes).

State

		A State describe an instantiated Model while at rest. An instance in any given State does not change until an Action is invoked on that instance.

		Each State has a name which must be unique throughout the whole state machine.

		Each State must be part of a Transistion, which means it must have at least an Action leading to it or an Action leading from it.

Action

		An Action is a means (and the only means) for a Model to transit from an arbitrary source State to arbitrary destination State (where the destination State can also be the source State, effectively creating a loop).

		An Action can define zero or more Attributes in order to be able to be invoked. Of these Attributes zero or more Attributes may have additional constraints (such as being Required).

		Each Action in a Model may only appear once in any Transition, which means that the name of the Action must be unique throughout the whole state machine.

In other words. Given an arbitrary Action (name) we also know the associated source and destination of it (which forms a Transition).

Attribute

		An Attribute basically is a Name/Value pair with additional constraints in form of annotations. The name of any Attribute is unique throughout the whole system and always consists of a dot-notation starting with reversed top level domain name (such as com.example.Appclusive.Blueprint.Name).

		Any Model can override or redefine any Attributes (or its constraints) that it derives from its ancestor Model chain.

		Any Attribute constraints directly derived from its ancestor Models are also present on the current Model. Any Attributes that a Model implements via one of its Behaviours must be re-defined on the Model.

Model

		Models - in contrast to Behaviours - provide actual implementations that can be used alone to provide functionality of any kind. A blueprint must always reference at least one Model explicitly (whereas never a Behaviour directly) and a Model can be instantiated whereas a Behaviour cannot.

		A Model must always derive from another single parent Model and multiple Models can derive from the parent Model (making them siblings). This effectively forms a single-parent hierarchy tree of Models eventually starting with BaseModel.

		A Model can choose not be the parent for any other Models which is then considered to be sealed.

ModelDefinition

Every time a Behaviour is defined, its actual implementation is done via a BehaviourDefinition (which is a special form of a Model). This means that this BehaviourDefinition contains all the Actions, States and Attributes the Behaviour whishes to expose.

BaseModel

The BaseModel is a special ModelDefinition (and thus also a Model) as it serves as the root Model for all other BehaviourDefinitions and thus all other Models.

BaseModelStates

The following lists the minimum set of States that every Model and Behaviour in the system must expose:

		InitialState

This is the first or starting point (which is in fact a State) of every Model to be instantiated. From there an instance of a Model will traverse from State to State via its exposed Actions.

From this State an Action called Initialise will be executed to allow the Model to povision its instance.

		DecommissionedState

Before a instance of a Model is disposed it must transit through a State that is called the DecommissionedState. An instance of a Model in this State must prepare itself to get disposed, but also may offer an option to get re-activated (via one of its exposed Action).

Instances in this State are periodically called by the system via the Finalise Action to check if they can be safely disposed.

		FinalState

With the InitialState being the first State of every instantiated Model, the FinalState is the last State of every instantiated Model. In fact this is the State where an instance of a Model is disposed and removed from the [[Inventory]].

		ErrorState

The ErrorState is reserved for situations where an instantiated model experienced an unforseen error condition and could not continue execution otherwise (such as a corrupt state). The Blueprint designer can use this state for remediation Actions (such as the Remedy Action).

BaseModelActions

The following lists the minimum set of Actions that every Model and Behaviour in the system must expose:

		Initialise

This Action is automatically invoked by the system when an instance of any Model is created.

		Finalise

This Action is automatically called by the system when an instance of a Model is in the DecommissionedStatE and going to be disposed. The Model may choose to deny the request for disposal effectively staying in the DecommissionedState.

		Remedy

An instance of a Model in the ErrorState may choose to perform a reconciliation task with the aim to place that instance in a defined and stable State. This default Action is called Remedy. A Blueprint desginer may choose to add additional remediation Actions where required.

BaseModel StateMachine and Transitions

The following illustrates the transitions of the state machine of the BaseModel:

InitialState -- > Initialise -- > DecommissionedState
DecommissionedState -- > Finalise -- > FinalState
ErrorState` -- > Remedy -- > ErrorState

Item

An instantiated (or instance of a) Model becomes an Item in the [[Inventory]].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		Appclusive latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

Blueprint.html

 Navigation

 		
 index

 		Appclusive latest documentation »

 A Blueprint wraps one or more Models so they can be made available in a Catalogue and be ordered and provisioned. There are two types of Blueprints:

		Simple (? Basic ?)

		Composite (? Complex, Combined, Advanced ?)

Simple

A simple Blueprint wraps and describes only a single Model. This means that all defined attributes of that Model effectively become the input parameters (? properties ?) for that Blueprint.

Composite

A composite Blueprint wraps an arbitrary number of Models and/or other Blueprints into a single Blueprint. Therefore a composite Blueprint can have a combination of input parameters that may be mapped to any Model attributes in any form that are required by the Models.

In addition the Blueprint designer may modify and map Blueprint input parameters in any way that he seems fit for that purpose. It is also possible to let a Blueprint define an input parameter that is used as a basis for other Model attributes, eg:

define input parameter 'com.example.Blueprint1.Size' := { S, M, L }

... can be mapped by the Blueprint to:

switch 'com.example.Appclusive.Product1.Size'
{
 case 'S':
 assign attribute 'com.example.VirtualMachine.CpuCount' = 1
 assign attribute 'com.example.VirtualMachine.MemoryGb' = 2
 case 'M':
 assign attribute 'com.example.VirtualMachine.CpuCount' = 2
 assign attribute 'com.example.VirtualMachine.MemoryG'b = 4
 case 'L':
 assign attribute 'com.example.VirtualMachine.CpuCount' = 4
 assign attribute 'com.example.VirtualMachine.MemoryGb' = 16
}

... where the attribute com.example.VirtualMachine.CpuCount and com.example.VirtualMachine.MemoryGb are specific attributes of a Model called com.example.VirtualMachine which the Blueprint whishes to make available for order.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_Footer.html

 Navigation

 		
 index

 		Appclusive latest documentation »

Appclusive [https://github.com/Appclusive] / Net.Appclusive.Docs [https://github.com/Appclusive/Net.Appclusive.Docs]

d-fens GmbH [http://d-fens.ch]General-Guisan-Strasse 6CH-6300 ZugSwitzerland

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

